一、 基本情况
姓名:方敏 性别:女
出生日期:1973年1月30日 民族:汉
政治面貌:民革党员
二、教育经历
1990.09-1994.07兰州大学, 生物化学专业, 学士
1998.09-2003.07中国科学院遗传与发育生物学研究所,遗传学专业,博士
三、 工作经历
1994.08-1998.08 中国航天科技集团公司第四研究院7416厂,助理工程师
2003.08-2008.06 美国福克斯肿瘤研究中心,博士后
2008.07-2010.02美国福克斯肿瘤研究中心,Research Associate
2010.03-2012.06美国福克斯肿瘤研究中心, Staff Scientist
2012.06-2023.06 中国科学院微生物研究所,研究员, 博士生导师
2015.10-2023.06 中国科学院大学岗位教授
2023.07-现在 河南大学生命科学学院 教授, 博士生导师
四、授课情况
中国科学院大学国际学院研究生课程“基础免疫学(Fundamental Immunology,英文)”首席教师,中国科学院大学存济医学院研究生课程“医学免疫学”及“医学病毒学”主讲教师。负责的“基础免疫学”获得中国科学院大学2019年“研究生优秀课程”; 主讲的“医学病毒学”课程获得中国科学院大学2020年“研究生优秀课程”;2022年获得中国科学院大学“李佩优秀教师奖”。
五、研究方向
病原微生物感染和免疫应答、免疫衰老及其分子机制、病原与宿主互作的研究
六、 荣誉及获奖情况
1. 第二批国家“青年千人计划”入选者
2. 2014年基金委“优秀青年”基金获得者
3. 科学中国人(2017)年度人物
4. 中国科学院第一届“率先杯”未来技术创新大赛“决赛优胜奖”
5. Gordon Research Conferences免疫化学和免疫生物学会议旅行奖,2007年,大会报告:NKG2D plays a partial role in NK cell mediated resistance to mousepox
6. WJ Avery 奖学金, 美国福克斯肿瘤研究中心, 2007-2010
七、社会任职
中国微生物学会病毒学专业委员会第一届青年委员会副主任委员,2013-2021
中国老年学和老年医学学会抗衰老分会委员,2018-2020
美国免疫学会会员,2017-现在
中国科学院微生物研究所第八届学位评定委员会委员,2013-2018 中国科学院微生物研究所第一届研究组长委员会副主任,2014-2018 |
八、项目情况
1. 广谱抗病毒抗体发现和设计 (2022YFC2303403), 国家重点研发计划,2022.12-2025.11,子课题负责人
2. 流感病毒感染引发细胞因子风暴的宿主特异性调控因子的筛选及功能研究(31970164),国家自然科学基金面上项目,2020.1-2023.12,主持人
3. 肺组织衰老过程中天然免疫应答减弱的细胞与分子机制研究(91749112),国家自然科学基金重大研究计划培养项目,2018.1-2020.12,主持人
4. 流感等重要病毒与宿主动态互作的细胞分子机制(2015CB910503), 科技部973计划,2015.1-2019.12,课题负责人
5. 宿主调控病毒复制机制的研究(2014CB542602),科技部973计划,2014.1-2018.12,子课题负责人
6. NK细胞随衰老出现发育分化缺陷的分子机制研究(31370877),国家自然科学基金面上项目,2014.1-2017.12,主持人
7. 生物制品质量控制共性关键技术服务网络(KFJ-SW-STS-162), 中国科学院科技服务网络计划(STS计划), 2016.1-2017.12, 子课题负责人
8. 免疫生物学(31322020),国家自然科学基金优秀青年科学基金项目,2014.1-2016.12,主持人
9. 人感染H7N9禽流感疫情研究(KJZD-EW-L09-3), 中国科学院重点部署项目, 2013.1-2014.12, 子课题负责人
九、代表性论文 (# Corresponding author)
1.An optimized protocol to detect ubiquitination modification of exogenous or endogenous proteins. Li X, Jiang W, Fang M#. STAR Protoc. 2023 Oct 18;4(4):102650. doi: 10.1016/j.xpro.2023.102650. Online ahead of print.
2. Airborne fine particles drive H1N1 viruses deep into the lower respiratory tract and distant organs. Dong Z, Ma J, Qiu J, Ren Q, Shan Q, Duan X, Li G, Zuo YY, Qi Y, Liu Y, Liu G, Lynch I, Fang M#, Liu S#. Sci Adv. 2023,9(23):eadf2165. doi: 10.1126/sciadv.adf2165. PMID: 37294770
3. Functional Involvement of circRNAs in the Innate Immune Responses to Viral Infection. Maarouf M, Wang L, Wang Y, Rai KR, Chen Y, Fang M, Chen JL. Viruses. 2023,15(8):1697. doi: 10.3390/v15081697.PMID: 37632040。
4. Mpox multi-antigen mRNA vaccine candidates by a simplified manufacturing strategy afford efficient protection against lethal orthopoxvirus challenge. Zeng J, Li Y, Jiang L, Luo L, Wang Y, Wang H, Han X, Zhao J, Gu G, Fang M, Huang Q, Yan J. Emerg Microbes Infect. 2023,12(1):2204151. doi:10.1080/22221751.2023.2204151. PMID: 37070521
5. UBL7 enhances antiviral innate immunity by promoting Lys27-linked polyubiquitination of MAVS. Jiang W, Li X, Xu H, Gu X, Li S, Zhu L, Lu J, Duan X, Li W, Fang M#. Cell Rep, 2023, 42(3):112272. doi: 10.1016/j.celrep.2023.112272.
6. Influenza A Virus-Induced circRNA circMerTK Negatively Regulates Innate Antiviral Responses. Qiu H, Yang B, Chen Y, Zhu Q, Wen F, Peng M, Wang G, Guo G, Chen B, Maarouf M, Fang M, Chen JL. Microbiol Spectr, 2023, e0363722. doi: 10.1128/spectrum.03637-22.
7. Design Strategies and Precautions for Using Vaccinia Virus in Tumor Virotherapy. Liu X, Zhao J, Li X, Lao, F, Fang M#. Vaccines, 2022, 10(9):1552. doi:10.3390/vaccines10091552.
9. Protective Human Anti-Poxvirus Monoclonal Antibodies Are Generated from Rare Memory B Cells Isolated by Multicolor Antigen Tetramers. Gu X, Zhang Y, Jiang W, Wang D, Lu J, Gu G, Qin C#, Fang M#. Vaccines, 2022, 10(7), 1084; doi: 10.3390/vaccines10071084
9. SARS-CoV-2 ORF10 impairs cilia by enhancing CUL2ZYG11B activity. Wang L, Liu C, Yang B, Zhang H, Jiao J, Zhang R, Liu S, Xiao S, Chen Y, Liu B, Ma Y, Duan X, Guo Y, Guo M, Wu B, Wang X, Huang X, Yang H, Gui Y, Fang M, Zhang L, Duo S, Guo X, Li W. J Cell Biol. 2022, 221(7):e202108015. doi: 10.1083/jcb.202108015.
10. The role of microRNA in the developmental and functional regulation of NK cells. Li S, Fang M, Lu J. Sheng Wu Gong Cheng Xue Bao. 2022, 38(6):2069-2078. doi: 10.13345/j.cjb.210774.
11. Multiple RNA virus matrix proteins interact with SLD5 to manipulate host cell cycle. Zhu L, Li X, Xu H, Fu L, Gao GF, Liu W, Zhao L, Wang X, Jiang W#, Fang M#. J Gen Virol. 2021 Dec;102(12):001697. doi: 10.1099/jgv.0.001697.
12. Legionella pneumophila Risk from Cooling Tower Systems in China. Qin T#, Zhao D, Zhu L, Ren H, Li Y, Liu X, Li X, Li W, Zhao N, Lu J, Liu D, Shi Y, Fang M#, Duan X#. Appl Environ Microbiol. 2021 Nov 24; AEM0192121.doi: 10.1128/AEM.01921-21. Online ahead of print.
13. Declined miR-181a-5p expression is associated with impaired natural killer cell development and function with aging. Lu J, Li S, Li X, Zhao W, Duan X, Gu X, Xu J, Yu B, Sigal LJ, Dong Z, Xie L, Fang M#. Aging Cell. 2021 May 20(5):e13353. doi: 10.1111/acel.13353.
14. Biological functions and ubiquitin modification of TBK1 in innate immunity. Xu H, Li X, Fang M, Jiang W. Sheng Wu Gong Cheng Xue Bao. 2021,37(4):1189-1204. doi: 10.13345/j.cjb.200397.
15. Fullerenols boosting the therapeutic effect of anti-CD47 antibody to trigger robust anti-tumor immunity by inducing calreticulin exposure. 2021 (37):101070. doi:10.1016/j.nantod.2020.101070.
16. Recurrent Sepsis Exacerbates CD4+ T Cell Exhaustion and Decreases Antiviral Immune Responses. He W, Xiao K, Xu J, Guan W, Xie S, Wang K, Yan P, Fang M#, Xie L#. Front Immunol. 2021 Feb 25;12:627435. doi: 10.3389/fimmu.2021.627435. eCollection 2021.
17. Immune Cell Number, Phenotype, and Function in the Elderly with Sepsis. He W, Xiao K, Fang M#, Xie L#. Aging Dis, 2021 Feb 1;12(1):277-296. doi: 10.14336/AD.2020.0627.
18. Structures of the four Ig-like domain LILRB2 and the four-domain LILRB1 and HLA-G1 complex. Wang Q, Song H, Cheng H, Qi J, Nam G, Tan S, Wang J, Fang M, Shi Y, Tian Z, Cao X, An Z, Yan J, Gao GF. Cell Mol Immunol. 2020 Sep;17(9):966-975. doi: 10.1038/s41423-019-0258-5.
19. Pregnancy immune tolerance at the maternal-fetal interface. Li X, Zhou J, Fang M#, Yu B#. Int Rev Immunol. 2020;39(6):247-263. doi: 10.1080/08830185.2020.1777292.
20. "Acquired" NKG2D Ligand Stimulates NK Cell-mediated Tumor Immunosurveillance. Wang D, Gu X, Liu X, Liu X, Wang B, Lao F, Fang M#. J Immunother. 2019; 42(6):189-196.
21. Influenza virus matrix protein M1 interacts with SLD5 to block host cell cycle. Zhu L, Zhao W, Lu J, Li S, Zhou K, Jiang W, Duan X, Fu L, Yu B, Cai KQ, Gao GF, Liu W, Fang M#. Cell Microbiol. 2019; 21(8):e13038. doi: 10.1111/cmi.13038.
22. Synthesis of 5-Thio-α-GalCer Analogues with Fluorinated Acyl Chain on Lipid Residue and Their Biological Evaluation. He P, Zhao C, Lu J, Zhang Y, Fang M#, Du Y#. ACS Med Chem Lett. 2019;10(2):221-225.
23. Infrared Skin-Like Active Stretchable Electronics Based on Organic–Inorganic Composite Structures for Promotion of Cutaneous Wound Healing. Zhang LJ, Jiang XX, Jiang W, Li S, Chi YX, Liu H, Zhang MY, Li JY, Fang M, Pan B, Chen YL, Shen CN, Guo X, Li R, Guo L, Su YW. ADVANCED MATERIALS TECHNOLOGIES. 2019, Aug 4(8): 1900150 doi:10.1002/admt.201900150.
24. Migratory Dendritic Cells, Group 1 Innate Lymphoid Cells, and Inflammatory Monocytes Collaborate to Recruit NK Cells to the Virus-Infected Lymph Node. Wong E, Xu RH, Rubio D, Lev A, Stotesbury C, Fang M, Sigal LJ. Cell Rep. 2018; 24(1):142-154.
25. GALNT3 inhibits NF-κB signaling during Influenza A virus infection. Wang B, Zhang Y, Jiang W, Zhu L, Li K, Zhou K, Dai D, Chang S, Fang M#. Biochem Biophys Res Commun. 2018;503(4):2872-2877.
26. The virulence of L. pneumophila is positively correlated with its ability to stimulate NF-κB activation. Wang H, Lu J, Li K, Ren H, Shi Y, Qin T#, Duan X#, Fang M#. Future Microbiol. 2018;13:1247-1259.
27. Development and Characterization of Stable Reporter Cells for Fast and Sensitive Detection of Pyrogen. Li L, Xu H, Jiang W, Li J, Liu W, Wang T#, Fang M#. Anal Biochem. 2018;557:69-76.
28. NK cells inhibit anti-M.bovis BCG T cell responses and aggravate pulmonary inflammation in a direct lung infection mouse model. Wang D, Gu X, Liu X, Wei S, Wang B, Fang M#. Cell Microbiol. 2018; 20(7):e12833.
29. Endogenous Cellular microRNAs Mediate Antiviral Defense against Influenza A Virus. Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF, Fang M#, Meng S#. Mol Ther-Nucl Acids. 2018; 10:361-375.
30. Aged Mice are More Resistant to Influenza Virus Infection due to Reduced Inflammation and Lung Pathology. Lu J, Duan X, Zhao W, Wang J, Wang H, Zhou K, Fang M#. Aging Dis. 2018; 9(3):358-373
31. Natural killer cells are activated and play a protective role against ZIKA
virus infection in mice. Duan X, Li S, Wong G, Wang D, Wang H, Lu J, Bi Y, Lu X, Shi Y, Yan J, Fang M#, Gao GF#. Sci Bull, 2017; 62:982-984.
32. Bidirectional factors impact the migration of NK cells to draining lymph node in aged mice during influenza virus infection. Duan X, Lu J, Wang H, Liu X, Wang J, Zhou K, Jiang W, Wang Y, Fang M#. Exp Gerontol. 2017; 96:127-137.
33. Changes of peripheral lymphocyte subsets and cytokine environment during ageing and deteriorating gastrointestinal tract health status. Wang J, Yang G, Wang D, Liu K, Ma Y, Liu H, Wu J#, Fang M#. Oncotarget. 2017; 8(37): 60764-60777.
34. Suppression of Rac1 Signaling by Influenza A Virus NS1 Facilitates Viral Replication. Jiang W, Sheng C, Gu X, Liu D, Yao C, Gao S, Chen S, Huang Y, Huang W#, Fang M#. Sci Rep. 2016; 6: 35041.
35. NK Cell Responses to Influenza Virus are Affected by Host Genetics and Infecting Viral Doses. Zhou K, Wang J, Fang M#. Austin Immunol. 2016; 1(1):1-2.
36. Swift and Strong NK Cell Responses Protect 129 Mice against High-Dose Influenza Virus Infection. Zhou K, Wang J, Li A, Zhao W, Wang D, Zhang W, Yan J, Gao GF, Liu W, Fang M#. J Immunol. 2016; 196(4):1842-54.
37. N-acetylgalactosaminyltransferases in cancer. Hussain MR, Hoessli DC, Fang M#. Oncotarget. 2016;7(33):54067-54081.
38. Protective CD8+ T cell memory without help. Fang M#, Sigal LJ#. Oncotarget. 2015; 6(30):28529-28530.
39. Natural Killer Cells are involved in Thymic Atrophy induced by InfluenzaA Virus Infection. Duan X, Lu J, Zhou K, Wang J, Wu J, Gao GF, Fang M#. J Gen Virol. 2015, 96:3223–3235
40. Synthesis and Biological Activities of 5-Thio-α-GalCers. Bi J, Wang J, Zhou K, Wang Y, Fang M#, Du Y#. ACS Med Chem Lett, 2015, 6(4): 476–480.
41. The natural killer cell dysfunction of aged mice is due to the bone marrow stroma and is not restored by IL-15/IL-15Rα treatment. Nair S, Fang M, Sigal LJ. Aging Cell. 2015; 14(2):180-90.
42. CD4+ T Cell Help Is Dispensable for Protective CD8+ T Cell Memory against Mousepox Virus following Vaccinia Virus Immunization. Fang M#, Remakus S, Roscoe F, Ma X, Sigal LJ#. J Virol. 2015; 89(1):776-83.
43. Natural Killer cells in Innate Defense against Infective Pathogens. Wang D, Ma Y, Wang J, Liu X, Fang M #. Journal of Clinical & Cellular Immunology. 2013; 10.4172/2155-9899.S13-006
44. Memory CD8⁺ T cells can outsource IFN-γ production but not cytolytic killing for antiviral protection. Remakus S, Avital Lev, Ma X, Fang M, Xu R, Sigal LJ. Cell Host Microbe, 2013: 13(5):546-57.
45. Immunosenescence and age-related viral diseases. Ma Y, Fang M#. Science China. Life sciences. 2013; 56: 399-405.
46. Perforin-dependent CD4+ T cell cytotoxicity contributes to control a murine poxvirus infection. Fang M, Siciliano N, Hersperger A, Roscoe F, Hu A, Ma X, Shamsedeen A, Eisenlohr L and Sigal L. PNAS. 2012; 109(25):9983-8.
47. CD94 is essential for NK cell-mediated resistance to a lethal viral disease. Fang M, Orr MT, Spee P, Egebjerg T, Lanier LL and Sigal LJ. Immunity. 2011; 34(4):579-89.
48. Development and function of CD94-deficient natural killer cells. Orr MT, Wu J, Fang M, Sigal LJ, Spee P, Egebjerg T, Dissen E, Fossum S, Phillips JH, Lanier LL. PLoS One. 2010; 5(12):e15184.
49. Age-dependent susceptibility to a viral disease due to decreased NK cell numbers and trafficking. Fang M, Roscoe F, Sigal LJ. J Exp Med. 2010; 207(11):2369-81.
50. Enhanced NK-cell development and function in BCAP-deficient mice. MacFarlane AW, Yamazaki T, Fang M, Sigal LJ, Kurosaki T, Campbell KS. Blood. 2008; 112:131-140.
51. A Role for NKG2D in NK Cell-Mediated Resistance to Poxvirus Disease. Fang M, Lanier LL, Sigal LJ. PLoS Pathog. 2008; 4(2):e30.
52. Memory CD8+ T cells are gatekeepers of the lymph node draining the site of viral infection. Xu RH*, Fang M*, Klein-Szanto A, Sigal LJ. PNAS. 2007; 104(26):10992-7. (* Co-first author)
53. Direct CD28 costimulation is required for CD8+ T cell-mediated resistance to an acute viral disease in a natural host. Fang M, Sigal LJ. J Immunol. 2006; 177(11):8027-36.
54. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Virology. 2006; 345(1):231-43.
55. Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. Fang M, Sigal LJ. J Immunol. 2005; 175(10): 6829-36.
56. Characterization of an anti-human ovarian carcinoma×anti-human CD3 bispecific single-chain antibody with an albumin-original interlinker. Fang M, Zhao R, Yang Z, Zhang Z, Li H, Zhang XT, Lin Q, Huang HL. Gynecol Oncol. 2004; 92:135-146.
57. Advances in bispecific IgG by design. Fang M, Huang HL. Chin J Cell Mol Immunol. 2003; 19(5): 519-521.
58. Effects of interlinker sequences on the biological properties of bispecific single-chain antibodies. Fang M, Jiang X, Yang Z, Yin CC, Li H, Zhao R, Zhang Z, Lin Q, Huang HL. Chin Sci Bulletin. 2003; 48(21): 2277-2283.
59. In vitro cytotoxicity research of a bispecific single-chain antibody directed against T cells and ovarian carcinoma. Zhao R, Fang M, Li H, Lin Q, Guo AG, Xue S, Huang HL. Chin J Microbiol Immunol. 2003; 23(6): 476-479.
60. A new model of trispecific antibody resulting the cytotoxicity directed against tumor cells. Song LP, Cheng JL, Wang XB, Zhang Z, Fang M, Zhou ZY, Huang HL. Acta Biochimica et Biophysiac Sinica. 2003; 35(6): 503-510.
61. Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. Zhang Z, Song LP, Fang M, Wang F, He D, Zhao R, Liu J, Zhou ZY, Yin CC, Lin Q, Huang HL. Biotechniques. 2003; 35(5): 1032-8, 1041-2.
62. Construction and expression of an anti-human ovarian carcinoma×anti-human CD3 bispecific single-chain antibody and its refolding studies. Fang M, Zhao R, Li H, Jiang X, Yin CC, Lin Q, Huang HL. High Technology letters, 2002; 12(11): 47-50.
63. Overexpression of DsbC and DsbG markedly improves soluble and functional expression of single-chain Fv antibodies in Escherichia coli. Zhang Z, Li ZH, Wang F, Fang M, Yin CC, Zhou ZY, Lin Q, Huang HL. Protein Expr Purif. 2002, 26(2): 218-228.
64. The study of a reshaping anti-CD28 heavy-chain variable domain(VH) antibody with CDR mutations. Cheng JL, Wang XB, Liu J, Gu Y, Zhang Z, Fang M, Yao XS, Huang HL. High Technology letters, 2001; 11(4): 11-15.
65. Advances in in vitro refolding of inclusion body proteins. Fang M and Huang HL. Chinese Journal of biotechnology, 2001;17:608-612.
专 著
1.Fang M and Sigal L. Studying NK cell responses to Ectromelia virus infections in mice. Methods Mol Biol. 2010; 612:411-28
2. 医学病毒学原理, 2020, 化学工业出版社,第六章 抗病毒适应性免疫应答,P106-129.
专 利
1.黄华樑,蒋欣,方敏,冯捷,周萍,余小淙,林晴. 抗人卵巢癌抗人CD3双特异性抗体. 中国,专利号:ZL01118247.4,授权公告日:2005年4月6日
2. Huang HL, Jiang X, Fang M, Yu X, Feng J, Zhou P, Lin Q. Anti human ovarian cancer-anti CD3 bispecific antibody. Patent NO.: US 7,262,276 B2. Date of Patent: Aug 28, 2007
3. Huang HL, Jiang X, Fang M, Yu X, Feng J, Zhou P, Lin Q. Anti-human ovarian cancer -anti-CD3 bispecific antibody. Patent NO.: EP 1 394 253 B1. Date of Patent: Jan 13, 2010
4. 方敏,赵文明,朱莉. SLD5蛋白及其编码基因在抗流感病毒中的应用. 中国,专利号:ZL201610440135.9,授权公告日:2019年7月5日
5. 方敏,周凯,王静,朱莉,方俊. Csad蛋白及其编码基因在抗流感病毒中的应用. 中国,专利号:ZL201610224034.8,授权公告日:2019年10月29日
6. 方敏, 姜威, 顾秀玲, 王东方, 李凯莉. 一种抗体融合蛋白及其制备方法与应用. 中国,专利号:ZL201610499349.3,授权公告日:2020年04月07日
7. 方敏,王浩宇,段学锋,秦天,卢娇,姜威. 一种检测嗜肺军团菌毒力的方法. 中国,专利号:ZL201810317033.7, 授权公告日:2020年11月20日
8. 方敏,孟颂东,王静,彭善鑫,魏松涛. 微RNA hsa-mir-127-3p及其类似物,以及表达该微RNA载体的应用. 中国,专利号:ZL201711470992.4, 授权公告日:2021年3月30日
9. 方敏,李凯莉,王滔,徐赫男,姜威,李晶,刘文军,段学锋. 一种可检测热原的单克隆细胞系的制备方法. 中国,专利号:ZL201810317034.1, 授权公告日:2021年10月01日
10. 方敏,姜威,徐赫男,顾秀玲,李凯莉. UBL7蛋白质及其编码基因在抗病毒感染中的应用. 中国,专利号:ZL201910216243.1, 授权公告日:2023年02月17日
11. 方敏,顾秀玲,张毓凡,姜威,卢娇,顾光磊. 一种痘病毒人源单克隆抗体及其应用. 中国,专利号:ZL202111078840.6, 授权公告日:2023年03月10日
十、国际会议
1. Antibodies and CD8+ T Cells Are Complementary and Essential for Natural Resistance to a Highly Lethal Cytopathic Virus. Fang M and Sigal L. XXXV International Congress of Physiological Sciences. 2005, San Diego, CA
2. Long-lived Memory CD8+ T cells Protect From a Lethal Viral Disease by Limiting Virus Spread From the Lymph Node Draining the Site of Primary Infection. Xu R, Fang M, Klein-Szanto A. and Sigal L. 2006 Annual Meeting of the American Associate of Immunologists. 2006, Boston, MA
3. Delayed Kinetics of the T Cell Response Determines Susceptibility to an Acute Viral Disease in the Absence of CD28 Costimulation. Fang M and Sigal L. Symposium of immunology of infectious diseases. 2006, Newark, NJ
4. NKG2D plays a partial role in NK cell mediated resistance to mousepox (Selected oral presentation). Fang M, Lanier L and Sigal L. Gordon Research Conferences: Immunochemistry & Immunobiology. 2007, Ventura, CA
5. The NK cell activating receptor NKG2D is involved in resistance to poxvirus disease. Fang M, Lanier L and Sigal L. Keystone Symposia: Viral Immunity. 2008, Keystone, CO
6. Aged-associated resistance to viral disease correlates with decreased recruitment of mature NK cells to the lymph node draining the site of viral infection and not with defective adaptive immunity. Fang M and Sigal L. 2009 Annual Meeting of the American Associate of Immunologists. 2009, Seattle, WA
7. The activating receptor CD94-NKG2E is required for protective NK cell responses to a lethal viral infection. Fang M, Shamsedeen A, Orr M, Lanier L, and Sigal L. 2010 Annual Meeting of the American Associate of Immunologists. 2010, Baltimore, MD
8. China-US NIAID TB Drug Discovery Forum. Section Co-Chair. 2013, Beijing, China
9. Targeting Natural Killer Cells: New Concept of Vaccine? Invited oral presentation, BIT's 5t h World Congress of Vaccine - 2013 (WCV-2013). Hangzhou, China
10. Investigating the role of Natural Killer cells during Mycobacterium tuberculosis infection by using a mouse model of subcutaneous infection of Bacillus Calmette–Guérin (BCG). Invited oral presentation, 161st OMICS group conference:Bacteriology & Infectious Diseases (2013). Baltimore, USA
11. Memory NK cells during mousepox infection. Invited oral presentation, 3rd International Conference and Exhibition on Clinical & Cellular Immunology (2014). Baltimore, USA
12. Swift and strong NK cell responses protect 129 mice against high dose influenza virus infection. NK2015, Montebello, Canada
13. Age-related changes in the NK cells and T cells between healthy people and cancer patients. GRC Biology of Aging, 2015, Newry, USA
14. Identify the molecular mechanisms that regulate defective NK cell development in aged mice. Invited oral presentation,6TH World Congress on Cell & Stem Cell Research, 2016, Philadelphia, USA.
15. Suppression of Rac1 Signaling by Viral NS1 Can Facilitate Influenza A Virus Replication. Invited oral presentation, 6TH International Conference and Exhibition on Immunology, 2016, Chicago, USA.
16. Natural Killer cells are activated and play a protective role against Zika virus infection in mice. Cell Symposia, Emerging and Re-emerging Viruses, 2017, Arlington, USA.
17. NK cells inhibit anti-M.bovis BCG T cell responses by lysing BCG-infected macrophages and aggravating pulmonary inflammation. Immunology 2018, 2018, Austin, USA.
18. Influenza virus M1 interacts with SLD5 to block host cell cycle and inhibit lung epithelial regeneration. Immunology 2019, 2019, San Diego, USA.